
3rd Lecture – Identification of computer system

requirements

Agenda

 Requirement engineering

 Classes of computer system requirements

 Non-functional requirements

 Techniques for requirement identification

 Quality features of the requirements

 UML use case diagram

 Use case description using a template

The background

 Poor quality requirements is consistently ranked first in
the hierarchy of causes leading to the failure of software
projects.

 One explanation would be that development teams
allocate too little time to understanding the

 real problems of business,

 user needs or

 nature of the environment in which the system will run.

 Also, developers are trying to provide technical solutions
as quickly as possible, but starting from an insufficient
understanding of the requirements of the problem.

Requirements engineering

 To be sure that a computer system correctly solves a specific
problem, you first need to understand correctly the
problem to be solved. This requires the discovery,
understanding, specifying and analyze of the following
components:
 WHAT problem should be solved;

 WHY the problem needs to be solved;

WHO is involved and is going to be responsible with this
problem solving.

 These three components constitute the foundation of
Computer System Requirement Engineering

Requirements engineering

Core activities for building a requirement model

Requirements engineering

 Often, difficulties in requirement modeling and analysis come from
insufficient understanding of the business logic part of the application.

 Business logic is the defining element for the modeling and automation
process. It includes both business rules and the business workflow
(processes) that describes the way of transferring documents and data
from one participant (individual or software system) to another.

 In developing information systems, business logic aims at:

 Modeling real world business objects (such as inventories, customers,
products);

 Managing business object storage solutions (business objects mapping into
the database tables);

 Describing how business objects interact with each other.

Requirements engineering

 In developing information systems, a requirement defines an
objective that it must be fulfilled, in response to the needs of its
users.

 It is part of the general purpose for which the computer system is
developed.

 The requirements also dictate the way the system should
respond to user interaction.

 Generally, developers should consider the following aspects
related to the requirements system :

 use of a technical language: requirements must always be specified
using the user’s language. The jargon of the analyzed field can
also be listed and analyzed;

 relationship with the business goals: each requirement must be
clearly linked to business objectives.

Types of information systems requirements

 Requirements engineering process aims to collect, develop,
correct and adjust large volumes of specifications which differ in
terms of purpose and mode of expression. Differentiations can
be made between:

 Descriptive requirements;

 Prescriptive requirements.

 Descriptive requirements display properties the system should
have, regardless of how it will work. Such properties are
generated usually by laws of nature or physical constraints.
Examples of descriptive specifications:

 Same book can not be borrowed by two subscribers simultaneously.

 If a hotel room is under renovation, then it can not be occupied.

Types of information systems requirements

 Prescriptive requirements display some properties the system
should have, that will be or will be not met by the system,
depending on the way the system will work. Exemples of
prescriptive specifications:

 A subscriber cannot borrow more than three book at the same time

 Goods have to be delivered within the time interval specified by
the buyer.

Distinction between descriptive and prescriptive
requirements is very important in the context of
requirements engineering, as we can negotiate, change
or find alternatives to prescriptive specifications, while
for the descriptive specifications these things are not
possible.

Types of information systems requirements

 Considering their functionalities, requirements can be:

 functional;

 non-functional.

 Functional requirements define the functions of a computer
system or of its components, through a set of inputs, behavior
and a set of outputs. This category includes:

 computations,

 technical details,

 information regarding data processing and manipulation,

 functionalities, for example, the way a use case has to be built.

Types of information systems requirements

 Non-functional requirements capture criteria that can be
used to analyze aspects of the system operation and not its
behavior.

 These impose constraints on the functional requirements
at design or implementation level (e.g. performance,
security or reliability requirements)

 Non-functional requirements are usually referred as
qualities of the system, but also as quality attributes,
quality objectives, quality features or constraints.

Non-functional requirements

Types of non-functional techniques

Non-functional requirements

A. Quality requirements define issues related to "how well" the
system should operate. These include specifications related to:

 Safety requirements are quality requirements for preventing
occurrence of accidents or environmental degradation.

 Security requirements describe system safeguards against
undesirable behavior.

 Confidentiality requirements indicate that certain information can not
be disclosed to unauthorized parties.

 Integrity requirements indicate that some information can be changed if
this was done in a fair and authorized manner.

 Availability requirements indicate that certain requirements and
resources can be used by authorized persons when necessary.

Non-functional requirements

A. Quality requirements (continued)

 Reliability requirements constraint the computer system to work
as expected and desired for long periods of time. Aside from
exceptional circumstances, the system must provide services in a
fair and robust manner.

 Performance requirements put conditions on the system
operation manner, for example the maximum time required for
executing an operation.

 Interface requirements indicate the way the computer system
interacts with the environment, the users, and with other systems.

Non-functional requirements

B. Compliance requirements impose the necessary conditions so that
the system operates in accordance with national laws, international
regulations, social norms, political and cultural constraints, standards
etc.

C. Architectural requirements impose structural constraints on the
computer system, so that it can work properly in the environment
where it will be implemented. It provides developers with guidance on
the suitable type of architecture for the system.

D. Development requirements are non-functional requirements that
impose the way the computer system should be developed, and not the
way the system should meet the functional requirements (time
limitations, resource availability).

Techniques for requirement identification

1. Interviews

 Interviewing the beneficiary is the most popular method for
requirement identification. Its success depends on the
involvement of all stakeholders, including managers,
stockholders, employees, etc. that will further be called general
users.

 Normally, an interview will focus on activities of the user within
the organization, the way the system implementation will
influence his work and the issues that he has identified in the
actual processes that take place in the organization. The
interview can reveal new requirements that were not originally
identified as part of the project objectives, but also conflicting
requirements.

Techniques for requirement identification

1. Interviews - continued

 The identification of conflicting requirements may be confusing,
as it does not seem normal that distinct persons working in the
same company have different visions on the same analyzed
aspect.

The analyst may ask himself the following
pertinent question : "How can a business be

competitive and profitable if there is no consensus, at least within
it, on how it works?"

A possible answer would be: “…the detail level
necessary for building a computer system is higher that the detail
level necessary for successfully running a business.”

Techniques for requirement identification

2. Join Requirement Planning Sessions

 Join Requirement Planning - JRP can be equivalent with
conducting interviews of all users (or at least a substantial part
thereof) at the same time and in the same room.

 All people that shape the direction of system development are
brought together in one place to provide details about what the
system should do.

 There should be present:

 a mediator to moderate these sessions, but also

 a person to document user proposals, using, for example, a video
projector and a visual modeling software.

Techniques for requirement identification

3. Use cases

 Use cases describe interactions between users and computer
system and show what users should do with the system by
identifying the important functions.

 A use case specifies the sequence of interactions between system
and external actors (such as persons, hardware devices or other
software systems), including also versions or extensions of the
main behavior of the system.

 Use cases can be one of the first forms of representation of the
requirements of a computer system. For this reason, they are
suitable for the early stages of the software development process.
Analysts together with beneficiaries of the system will have to
examine and validate every proposed use case.

Techniques for requirement identification

4. Social observation and analysis

 Observation based methods imply the existence of an observer
that watches the system users and records information on the
work they perform.

 Social observations can by direct observations, involving
observer presence during activity performance or indirect
observations, when user activity is watched through other
means, such as a video recording.

 This method offers the advantage of facilitating the collection of
quality data and it is useful for analyzing real processes and
activities. This way, errors or omissions coming from the
beneficiary description of the workflow can be avoided.

Techniques for requirement identification

5. Prototyping

 A prototype is useful for the end user who will understand better
what he wants or what is expected from the product. It is also useful for
developers to test some techniques, developed algorithms, interfaces
etc.

 There are two approaches:

 Testing/trial prototype – it must be fast, if not perfect, it can be used to
validate the interface, to customize the architecture to include
requirements as well as possible, or to validate specific algorithms;

 Evolutive prototype – it develops the final product in order to be able to
consider all the quality features of the final software product; Generally
this prototype may not be fast, but can improve the model by ensuring
high quality of the software.

Use case UML diagram

 Its role is to represent in graphical format the
functionalities that have to be met by the computer system
in the final stage.

 The model developed by use case diagrams and documents
that briefly describe each use case is called
REQUIREMENTS MODEL.

 Use case diagrams are made up of actors and use cases, on
one side, and the relationships between them, on the other
side.

Introduction

 The use case is a fundamental concept of many object-oriented

development methods.

 Use case diagrams express the expectations of the

customers/stakeholders

 essential for a detailed design

 The use case diagram is used during the entire analysis and design

process.

 We can use a use case diagram to answer the following questions:

 What is being described? (The system.)

 Who interacts with the system? (The actors.)

 What can the actors do? (The use cases.)

3

Example: Student Administration System

 System

(what is being described?)

 Student administration system

 Actors

(who interacts with the system?)

 Professor

 Use cases

(what can the actors do?)

 Query student data

 Issue certificate

 Announce exam

4

Use Case

 Describes functionality expected from the system under development.

 Provides tangible benefit for one or more actors that communicate with

this use case.

 Derived from collected customer wishes.

 Set of all use cases describes the functionality that a system shall

provide.

 Documents the functionality that a system offers.

 Alternative notations:

5

Actor (1/3)

 Actors interact with the system …

 by using use cases,

i.e., the actors initiate the execution of use cases.

 by being used by use cases,

i.e., the actors provide functionality for the execution of use cases.

 Actors represent roles that users adopt.

 Specific users can adopt and set aside multiple roles simultaneously.

 Actors are not part of the system, i.e., they are outside of the system

boundaries.

 Alternative notations:

6

Actor (2/3)

 Usually user data is also administered within the system. This data is

modeled within the system in the form of objects and classes.

 Example: actor Assistant

 The actor Assistant interacts with the system Laboratory

Assignment by using it.

 The class Assistant describes objects representing user data (e.g.,

name, ssNr, …).

7

Actor (3/3)

 Human

 E.g., Student, Professor

 Non-human

 E.g., E-Mail Server

 Primary: has the main benefit of the execution of the use case

 Secondary: receives no direct benefit

 Active: initiates the execution of the use case

 Passive: provides functionality for the execution of the use case

 Example:

8

Non-human

Secondary

Passive

Human

Primary

Active

Human

Primary

Active

Human

Secondary

Active

Relationships between Use Cases and Actors

8

 Actors are connected with use cases via solid lines (associations).

 Every actor must communicate with at least one use case.

 An association is always binary.

 Multiplicities may be specified.

9

 The behavior of one use case (included use case) is integrated in the

behavior of another use case (base use case)

 Example:

Relationships between Use Cases

«include» - Relationship

10

Base use case

requires the behavior of the included use

case to be able to offer its functionality

Included use case

may be executed on its own

Relationships between Use Cases

«extend» - Relationship

11

 The behavior of one use case (extending use case) may be integrated

in the behavior of another use case (base use case) but does not have

to.

 Both use cases may also be executed independently of each other.

 A decides if B is executed.

 Extension points define at which point the behavior is integrated.

 Conditions define under which circumstances the behavior is

integrated.

Base use case

Extending use case

Relationships between Use Cases

«extend» - Relationship: Extension Points

12

 Extension points are written directly within the use case.

 Specification of multiple extension points is possible.

 Example:

Relationships between Use Cases

Generalization of Use Cases

13

 Use case A generalizes use case B.

 B inherits the behavior of A and may

either extend or overwrite it.

 B also inherits all relationships from A.

 B adopts the basic functionality of A but

decides itself what part of A is executed or changed.

 A may be labeled {abstract}

 Cannot be executed directly

 Only B is executable

 Example:

Base use case

Sub use case

Relationships between Actors

Generalization of Actors

14

 Actor A inherits from actor B.

 A can communicate with X and Y.

 B can only communicate with Y.

 Multiple inheritance is permitted.

 Abstract actors are possible.

 Example:

Super-actor

Sub-actor

Professor AND Assistant needed

for executing Query student data

Professor OR Assistant needed

for executing Query student data

Description of Use Cases

 Structured approach

 Name

 Short description

 Precondition: prerequisite for successful execution

 Postcondition: system state after successful execution

 Error situations: errors relevant to the problem domain

 System state on the occurrence of an error

 Actors that communicate with the use case

 Trigger: events which initiate/start the use case

 Standard process: individual steps to be taken

 Alternative processes: deviations from the standard process

[A. Cockburn: Writing Effective Use Cases, Addison Wesley, 2000]

15

Description of Use Cases - Example

 Name: Reserve lecture hall

 Short description: An employee reserves a lecture hall at the university for an event.

 Precondition: The employee is authorized to reserve lecture halls.

 Postcondition: A lecture hall is reserved.

 Error situations: There is no free lecture hall.

 System state in the event of an error: The employee has not reserved a lecture hall.

 Actors: Employee

 Trigger: Employee requires a lecture hall.

 Standard process: (1) Employee logs in to the system.

(2) Employee selects the lecture hall.

(3) Employee selects the date.

(4) System confirms that the lecture hall is free.

(5) Employee confirms the reservation.

 Alternative processes: (4’) Lecture hall is not free.

(5’) System proposes an alternative lecture hall.

(6’) Employee selects alternative lecture hall and confirms the reservation.

16

Use case element Description

Code It is a unique identifier of the use case.
State The state of completion is, for example, draft, completed or approved

Scope The system (subsystem) under design
Name The use case name, short and suggestive. Typically the name is of the

format action + object
Primary actor The beneficiary actor that initiates the use case and follows a specific

purpose
Description Brief, free-text presentation of the use case

Preconditions Any state the system must be in or conditions that must be met before
the use case is started.

Postconditions Any state the system must be in or conditions that must be met after the
use case is completed successfully.

Trigger An event or a sequence of events that initiate the use case.

Main course The most common, successful path of interactions between the user and
the system.

Alternate courses Most significant alternatives and exceptions that may occur in the flow of
events

Relationships What are the relationships with other use cases (include or extend types)

Frequency of use How often it is this functionality expected to be used

Business rules What rules govern the use case; What privileges should actors have

Use case template

Importance of use case diagrams

 All processes that have to be carried on by the system are found
in the form of a use case. Processes are then described textually
or by o sequence of steps. For graphical modeling of scenarios,
activity diagram can be used.

 Once the system behavior has been so depicted, the use cases are
further analyzed to identify how objects interact to model this
behavior. Sequence diagrams and communication diagrams
are used for modeling object interactions.

 Use case diagram is also used for testing weather the system is
consistent with the initial requirements. It takes up all use cases
to see if the system meets customer requirements.

Exemple of scenario

The project goal is to develop a software application for the management of a hotel business
unit. In order to check in, a customer can request to reserve one or more rooms by e-mail or
telephone. For this, he provides the receptionist with information on the period of
accommodation and type of rooms required. Customers will get discounts if they reserve at
least 3 rooms or if the period of accommodation exceeds 5 days. The receptionist checks
availability and notifies the client of this and the estimated cost of accommodation. If there
are no rooms available as requested, the receptionist can provide alternatives to the customer.
The client may request a discount (additional or not) and the receptionist will decide the
feasibility discount, assisted mandatory by the hotel manager. If the client agrees with the
proposed price, they proceed to the reservation. For new customers, the receptionist asks
identification data, which he introduces in the application.

Once at the hotel and if he has made a prior booking, the customer will provide his identification
and / or booking number and the check in is finalized. If there is no reservation, the availability
for the required period will be checked. When there is such a room, accommodation is made.
At the end of the stay, the receptionist prepares a list of all the services used by the customer
and their price. The list must be validated by the customer, then the final invoice is drawn up.
The invoice can be paid partially or fully by bank transfer, cash or using a credit card. Also,
before leaving the hotel, the customer is asked to complete a form to evaluate the services
provided by the hotel premises

General requirements for hotel accommodation activity
The project aims at developing a computer system for a hotel that would
provide support for its activities.

The core activity of the hotel is providing accommodation, catering
services and other services of commercial agents affiliated to the hotel.

The IT system should achieve: booking rooms and customer registration,
management of room occupancy, and other services used by customers.

The arrangements for booking, customer registration and corresponding
payments derive from the marketing and management policy of the hotel.

The basic requirements that should be accomplished are:
 Reducing the time to fill in the forms for reservation and registration by

automating the process of updating availability and allocation of rooms;
 Monitoring staff involved in bookings, registrations, and various changes or

cancellations.
 Reducing time spent making lists of rooms to be cleaned, lists of arrivals, lists of

room status;
 Increased promptness in responding to customer about the availability of the

accommodation requested for a specific period;
 Creating a secure and effective system that protects against overbooking.

Use case diagram - example

Use case element Description
Code CU01

State Draft

Scope Manage hotel accommodation activity

Name Book rooms

Primary actor Client

Description It involves booking for one or more rooms

Preconditions The receptionist is logged in the system

Postconditions The booking was accomplished and the client receives booking confirmation.

Trigger Client asks for booking one ore more rooms by email or by phone.

Main course 1. The client provides the receptionist with information on the period of accommodation and

type of rooms required

2. The receptionist checks room availability.

3. The receptionist notifies the client that there are available rooms. [A alternate course: There

are not available rooms according to client requirements]

4. The receptionist informs the client of the estimated costs. [Extention point: CU07 Decide

discount granting]

5. The client confirms booking period and agrees estimated cost. [B alternate course: the client

doesn’t agree the booking conditions]

6. The receptionist asks the customer identification data. [C alternate course: customer data

are already in the system]

7. The receptionist enters customer data in the system.

8. The receptionist makes room booking .

9. The client receives the confirmation of booking.

Alternate courses A: 1. The receptionist provides booking alternatives to the client.

2. The client selects an alternative and the scenario ends.

B: 1. the client does not confirm booking and the scenario ends.

C: 1. Go to step 8.

Relationships Extended by CU07 Decide discount granting

Frequency of use Very often

Business rules When the client asks for discount, the receptionist can grant it only if manager agrees with it .

Exemples of non-functional requirements
 Quality requirements

i. Safety
 The system should stop working if the outside temperature drops

below 4 degrees C.
 The system should stop working in case of fire.
 The system should stop working in case of obvious attacks.

ii. Security
 Data access permissions can only be changed by the system

administrator .
 All system data must be copied every 24 hours and backups must be

stored in a safe place that is not in the same building as the system.
 All external communications between data server and client must be

encrypted.
iii. Reliability

 The system must have an availability of 999/1000 or 99%. This is a
requirement of reliability which implies that out of every 1,000
service requests, 999 must be met.

iv. Performance
 The system will process at least X transactions per second.

Exemples of non-functional requirements

 Compliance requirements

 Legal and regulatory requirements: all changes to user data
must be registered and stored at least 6 years.

 Licensing requirements:

 “Update order” process will be licensed for 300 concurrent users.

 PostalCode_Address file will be licensed for a year, starting each
April.

 Architectural requirements
 Data persistence will be ensured by a relational database.

 This database will be Oracle 12g.

 The system will run 24 hours a day, 7 days a week..

